Origin, reservoirs and fate control of natural uranium in northern Bavaria, Germany

^aBanning A, ^{a,b}Rubinos D A, ^aRüde T R

Uranium (U) is an ubiquitary trace element in the environment with potential adverse human health effects. It was shown that the risk of U exposure is primarily due to its toxicity as a nephrotoxic heavy metal rather than its radioactive character [1]

There is no general agreement on fixed limitations for U concentrations in drinking water to date. German legislation recently decided on a limitation of 10 μ g L⁻¹, valid since November 2011, making Germany the first EU member state with a binding maximum U concentration.

Drinking water supply in northern Bavaria is dependent on groundwater extraction from terrestrial Norian sandstones. Partly elevated concentrations of geogenic U (up to 42 μ g L⁻¹) were detected in this groundwater with the responsible sources and processes remaining uncertain. Therefore, we conducted a detailed geochemical and mineralogical characterization of aquifer material on a macro- and microscale and evaluated U remobilization behaviour. Results were set in relation to groundwater composition and physico-chemical conditions, also taking the distribution of the affected aquifer and the paleoenvironment into account.

We found that so-called "active arkoses" [2]- uraniferous inclusions within the aquifer sandstones represent the most likely U source in the study area. Syndiagenetic mineral precipitation from paleogroundwater led to accumulation of sedimentary U which primarily originates from felsic-magmatic provenance areas. The sediments document U loss during weathering of carbonate fluorapatite accounting for up to 50 wt.% in freshly exposed material. This phosphatic rock matrix partly hosts U concentrations >1000 µg g-1 with the main uptake mechanism being stoichiometric substitution for Ca [3]. Coupled substitution (CO₃²⁻ + F- \leftrightarrow PO₄³⁻) in the mineral lattice and critical doses of α -recoil damage due to high U contents, both of which could be confirmed in the present study, result in structurally and radiatively enhanced apatite solubility [4, 5]. Moreover, increased U mobility was detected in the presence of F- in solution, derived from carbonate fluorapatite breakdown.

Together with uraniferous dolomitic inclusions north

9th International Symposium on Environmental Geochemistry

of the study area, phosphatic "active arkoses" are likely to control the geogenic U problem in northern Bavarian groundwater.

References

[1] Orloff K G et al., 2004. Human exposure to uranium in groundwater. Environ Res 94, 319-326.

[2]Abele G et al., 1962. Die Uranvorkommen im Burgsandstein Mittelfrankens. Geol Bav 19, 3-90.

[3] Starinsky A et al., 1982. The incorporation of uranium into diagenetic phosphorite. Geochim Cosmochim Ac 46, 1365-1374. [4] Regnier P et al., 1994. Mechanism of CO32- substitution in carbonate-fluorapatite: Evidence from FTIR spectroscopy, 13C NMR, and quantum mechanical calculations. Am Mineral 79, 809-818.

[5] Petit J-C et al., 1985. Radiation-enhanced release of uranium from accessory minerals in crystalline rocks. Geochim Cosmochim Ac 49, 871-876.

^a RWTH Aachen University, Institute of Hydrogeology, Lochnerstraße 4-20, 52064 Aachen, Germany (banning@hydro.rwth-aachen.de) ^b University of Santiago de Compostela, Faculty of Pharmacy, Department of Soil Science and Agricultural Chemistry, 15782 Santiago de Compostela, Spain

9th International Symposium on Environmental Geochemistry