A global perspective on the health impacts of coal and coal ash: Facts and fallacies

Dr. Robert B. Finkelman Emeritus Scientist U.S. Geological Survey rbf@usgs.gov

Factors affecting the environmental and health impacts of coal

- Composition of the coal
 - Organic, inorganic, mineralogy, element modes of occurrence
- Ash yield
- Mining practices
- Transportation and storage practices
- Boiler type and combustion conditions
- Pollution control technology
- Climate
- Geology
- Ash utilization and disposal technology

Table 2. Arithmetic means and standard deviations (S.D.) for 78 elements in U.S. coal. (All values are on a w hole-coal basis. Data are from the U.S. Geological Survey's National Coal Resources Data System (NCRDS) except for estimated values (in parenthes

Arithmetic					
		Standard	Maximum	1	
Component	Mean	Deviation	Value		No. of Samples
Ash %	13.1	8.3	50.0	7976	
Aluminum (Al) %	1.5	1.1	10.6	7882	
Antimony (Sb) ppm	1.2	1.6	35	7473	
Arsenic (As) ppm	24	60	2200	7676	
Barium (Ba) ppm	170	350	22000	7836	
Beryllium (Be) ppm	2.2	4.1	330	7484	
Bismuth (Bi) ppm	(<1.0)	n.d.	14	128	
Boron (B) ppm	49	54	1700	7874	
Bromine (Br) ppm	17	19	160	4999	
Cadmium (Cd) ppm	.47	4.6	170	6150	
Calcium (Ca) %	.46	1.0	72	7887	
Carbon (C) %	63	15	90	7154	
Cerium (Ce) ppm	21	28	700	5525	
Cesium (Cs) ppm	1.1	1.1	15	4972	
Chlorine (Cl) ppm	614	670	8800	4171	
Chromium (Cr) ppm	15	15	250	7847	
Cobalt (Co) ppm	6.1	10	500	7800	
Copper (Cu) ppm	16	15	280	7911	
Dysprosium (Dy) ppm	1.9	2.7	28	1510	
Erbium (Er) ppm	1.0	1.1	11	1792	
Europium (Eu) ppm	.40	.33	4.8	5268	
Fluorine (F) ppm	98	160	4000	7376	
Gadolinium (Gd) ppm	(1.8)	n.d.	39	2376	
Gallium (Ga) ppm	5.7	4.2	45	7565	
Germanium (Ge) ppm	5.7	14	780	5689	
Gold (Au) ppm	(<0.05)	n.d.	n.d.	n.d.	
Hafnium (Hf) ppm	.73	.68	18	5120	
Holmium (Ho) ppm	(0.35)	n.d.	4.5	1130	
Hydrogen (H) %	5.2	0.9	9.5	/155	
Indium (In) ppm	(<0.3)	n.d.	n.d.	n.d.	
Iodine (I) ppm	(<1.0)	n.d.	n.d.	n.d.	
Iridium (Ir) ppm	(<0.001)	n.d.	n.d.	n.d.	
Iron (⊢e) %	1.3	1.5	24	7882	
Lanthanum (La) ppm	12	16	300	6235	
Lead (Pb) ppm	11	37	1900	7469	
Litnium (Li) ppm	16	20	370	7848	
Lutetium (Lu) ppm	.14	.10	1.8	5008	
iviagnesium (Mg) %	.11	.12	1.5	1881	
Marganese (IVIn) ppm	43	84	2500	7796	
iviercury (Hg) ppm	.17	.24	10	7649	

Palladium (pd) ppm	(<0.001)	n.d.	n.d.	n.d.	
Niobium (Nb) ppm	2.9	3.1	70	6843	
Nitrogen (N) %	1.3	0.4	13	7153	
Osmium (Os) ppm	(<0.001)	n.d.	n.d.	n.d.	
Oxygen (O) %	16	12	60	7151	
Phosphorus (P) ppm	430	1500	58000	5079	
Platinum (Pt) ppm	(<0.001)	n.d.	n.d.	n.d.	
Potassium (K) %	.18	0.21	2.0	7830	
Praseodymium (Pr) ppm	(2.4)	n.d.	65	1533	
Rhenium (Re) ppm	(<0.001)	n.d.	n.d.	n.d.	
Rhodium (Rh) ppm	(<0.001)	n.d.	n.d.	n.d.	
Rubidium (Rb) ppm	21	20	140	2648	
Ruthenium (Ru) ppm	(<0.001)	n.d.	n.d.	n.d.	
Samarium (Sm) ppm	1.7	1.4	18	5151	
Scandium (Sc) ppm	4.2	4.4	100	7803	
Selenium (Se) ppm	2.8	3	150	7563	
Silicon (Si) %	2.7	2.4	20	7846	
Silver (Ag) ppm	(<0.1)	0.35	19	5038	
Sodium (Na) %	.08	0.12	1.4	7784	
Strontium (Sr) ppm	130	150	2800	7842	
Sulfur (S) %	1.8	1.8	25	7214	
Tantalum (Ta) ppm	.22	0.19	1.7	4622	
Tellurium (Te) ppm	(<0.1)	n.d.	n.d.	n.d.	
Terbium (Tb) ppm	.30	0.23	3.9	5024	
Thallium (TI) ppm	1.2	3.4	52	1149	
Thorium (Th) ppm	3.2	3	79	6866	
Thulium (Tm) ppm	(0.15)	n.d.	1.9	365	
Tin (Sn) ppm	1.3	4.3	140	3004	
Titanium (Ti) %	.08	0.07	.74	7653	
Tungsten (W) ppm	1.0	7.6	400	4714	
Uranium (U) ppm	2.1	16	1300	6923	
Vanadium (V) ppm	22	20	370	7924	
Utterbium (Yb) ppm	(0.95)	n.d.	20	7522	
Yttrium (Y) ppm	8.5	6.7	170	7897	
Zinc (Zn) ppn	53	440	19000	7908	
Zironium (Zr) ppm	27	32	700	7913	

MINERALS IN COAL

Accessories

- •Galena (PbS)
- •Sphalerite (Zn, CdS)
- •Clausthalite (PbSe)
- •Chalcopyrite (CuS)
- •Crandallite Group (Ca, Ba, Sr, Al, P)
- •Monazite (REE, P)
- •Apatite (Ca, P)
- •Barite (Ba, S)
- •Rutile (Ti)
- •Zircon (Zr, Si)
- •Feldspars (Ca, Na, K, Al, Si)
- •Zeolites (Ca, Na, K, Al, Si)
- •Ankerite (Fe, Mg, Ca)
- •Micas (K, Fe, Mg, Ti, Al, Si)

Table 4. Probable modes of occurrence of selected elements in coal						
	[Modified from Finkelman (1982)]					
Element	Modes of Occurrence					
Aluminium	- Clays, feldspars, perhaps some organic association					
Antimony	 Accessory sulfide, some organic association 					
Arsenic	- Solid solution in pyrite					
Barium	- Barite, crandallite, organic association in low-rank coal					
Beryllium	- Organic association, clay					
Bismuth	- Accessory sulfide					
Boron	- Organic association, illite					
Bromine	- Organic association					
Cadmium	- Sphalerite					
Calcium	- Calcite, organic assoc., sulphates, phosphates, silicates					
Cesium	- Clays, feldspar, mica					
Chlorine	- Organic association					
Chromium	- Clays (?)					
Cobalt	- Accessory sulfides, pyrite					
Copper	- Chalcopyrite					
Fluorine	- Perhaps apatite, clays, mica, amphiboles					
Gallium	- Clays, organics, sulfides					
Germanium	- Organic association					
Gold	- Native gold					
Hafnium	- Zircon					
Indium	- Probably sulfides					
lodine	- Probably organic association					
Iron	- Pyrite, siderite, sulfates, oxides, some organic assoc.					
Lead	- Galena, PbSe					

Lithium	- Clays					
Magnesium	- Clays					
Manganese	- Siderite, calcite					
Mercury	- Solid solution with pyrite					
Molybdenum	- Unclear; perhaps with sulfides or organics					
Nickel	- Unclear; perhaps with sulfides, organics, or clay					
Niobium	- Oxides					
Phosphorus	- Phosphates					
Platinum	- Native alloys, perhaps some organic association					
Rare-earths	- Phosphates, some organic association					
Rubidium	- Probably illite					
Scandium	- Unclear; clays, phosphates, or organics					
Selenium	- Organic association, pyrite, PbSe					
Silicon	- Quartz, clays, silicates					
Silver	- Perhaps silver sulfides					
Sodium	- Organic association, clays, zeolites, silicates					
Strontium	- Carbonates, phosphates, organic association					
Tantalum	- Oxides					
Tellurium	- Unclear					
Thorium	- Rare-earth phosphates					
Tin	 Inorganic: tin oxides or sulfides 					
Titanium	- Oxides, clays, some organic association					
Tungsten	- Oxides, organic association					
Uranium	- Organic association, zircon					
Vanadium	- Clays, perhaps some organic association					
Yttrium	- Rare-earth phosphates					
Zinc	- Sphalerite					
Zirconium	- Zircon					

Trace Elements in Coal Can Kill or Maim

FALLACY

Trace Elements in Coal Are Known to Have Killed or Maimed Millions Around the World

Known Health Impacts from Trace Elements in Coal

- China arsenic poisoning from residential coal use
- China fluorine poisoning from residential coal use
- China Selenosis from stone coal ash
- Czechoslovakia Impaired hearing in children attributed to arsenic emitted from power plant
- Czechoslovakia Increased antibodies attributed to beryllium exposure from power plant
- India Various health problems from uncontrolled mine fire
- **Global** Mercury affect on fetuses???

Burning Coal Beds and Stockpiles are Significant Health Hazards

Jharia Coalfield, India

Witbank Coalfield – South Africa

Anthracite Region, U.S.A.

Arsenic Phases

Selenium Minerals

Fluorine Minerals

Impacts of Spontaneous Combustion

Collected samples of gas and condensates from a coal mine in the Witbank area, SA.

Huge concentrations of benzene, toluene, xylene, and ethylbenzene

Small (<10 μ m) grains containing mercury and minute (~ 1 μ m) globules containing arsenic.

• (M.Sc. student – Jean Denis Poné)

Coal in the Ground Does Not Present Any Health Threats

Figure IN-5. Ferris coal beds.

BALKAN ENDEMIC NEPHROPATHY (BEN)

rural wells may supply tainted drinking water

groundwater percolates through coal seam

BEN patient being treated in dialysis clinic (Romania)

Water from wells in areas of Louisiana with high incidence of renal pelvic cancer and with lignite deposits (W1 and W2) have much higher levels of organic contaminants compared to control sites (CW1 and CW2)

Total ion currents (TICs) of Lousiana drinking well water samples collected from areas with high incidence of urinary tract cancer and underlying coal deposits (W1, W2) and control drinking well water samples from areas lacking coal deposits (CW1, CW2).

Trace Elements in Fly Ash Can Present a Health Hazard

TABLE 25 Effect of Fly-Ash Particle Size on the						
Concentration of Some Trace Elements (ppm) ^a						
Size Range (um)						
Element	>15	8-15	3-8	<3		
As	13.7	56	87	132		
Be	6.3	8.5	9.5	10.3		
Cd	0.4	1.6	2.8	4.6		
Со	8.9	16.3	19	21		
Cr	28	49	59	63		
Cu	56	89	107	137		
Ga	43	116	140	178		
Mn	207	231	261	317		
Мо	9.1	28	40	50		
Ni	25	37	44	40		
Pb	73	169	226	278		
Sb	2.6	8.3	13	20.6		
Se	19	59	78	198		
U	8.8	16	22	29		
V	86	178	244	327		
W	3.4	8.6	16	24		
Zn	71	194	304	550		
<i>a</i> Source: Ondov <i>et al</i> . (1979).						

Cr in Ash: XAFS

- Cr can be found as:
 - Cr/spinel associated with magnetic iron oxides.
 - Cr associated with aluminosilicate glass.
- Oxidation State of Cr
 - Often <5% Cr as Cr(VI) in bottom ash and fly-ash from bituminous coals.
 - Rarely up to 20% Cr as Cr(VI) in fly-ash from lower-rank coals.

FALLACY

Radioactivity from Coal and Coal Ash Presents a Threat to Health

Typical Range of Uranium concentration in coal, fly ash, and a variety of common rocks

Photograph of hollow glassy fly ash particle (0.01 cm D) Fission track radiograph of the same particle

Burning Coal Can Be Good For Your Health

