IN SITU TERRESTRIAL GAMMA RADIATION IN SEVATTUR– SAMALPATTI CARBONATITE COMPLEXES, TAMIL NADU, INDIA

S. SRINIVASALU¹*, B. UMA MAHESWARI¹, SAVITHRI BABU¹, T. SUBRAMANI¹, B. SENTHILKUMAR², R. RAMESH², V. RAM MOHAN³, L. ELANGO¹, M. P. JONATHAN⁴, P.D. ROY⁵

¹Department of Geology, Anna University, Chennai, 600025, India; ²Institute for Ocean Management, Anna University, Chennai, 600025, India; ³Department of Geology, University of Madras, Chennai, 600025, India; ⁴Interdisciplinary Research Centre for Environment and Development (CIIMED), Institute Politechnico Nacional, Mexico DF, 07340, Mexico; ⁵Department of Geochemistry, Institute of Geology, Universidad Nacional Autonoma de Mexico, Mexico DF, 04510, Mexico ponmozhisrini2001@yahoo.com

Natural radioactivity in rocks is caused principally by primordial radionuclides, such as 238U, 235U, 232Th, and to a lesser extent by 40K and 87Rb. Concentration of these radioactive elements could result in the anomalous values of terrestrial gamma radiation. Even though the radiation from these naturally sources are generally low, it may cause health problems. The geology of the area plays a major role in the concentration and distribution pattern of these elements. Hence a study of in situ terrestrial gamma radiation levels and distribution of dose rates in parts of the Sevattur-Samalpatti carbonatite complexes, Tamil Nadu, India has been taken up using a portable radiation survey meter. Correlation between gamma level of soils and the underlying rocks suggest that soils are in situ and they are derived from these rocks. The highest level of radiation is recorded from Sevvatur in Carbonatite rocks and soil over these rocks. The carbonatites are poorly exposed and seen as isolated mounds and boulders as well as linear dykes, yeins and lenses within pyroxenite and svenite. Carbonatites from Sevattur contain pyrochlore and apatite with calcite. The rocks contain 0.5% (Nb,Ta)₂O₅ and 10.% P₂O₅. The pyrochlore (uraniferous type) is in metamic state and is disseminated. The pyrochlore minerals contain 19.30% of U₃O₈. Hence the radiation is high. The Samalpatti carbonatites have very low radiation. The Samalpatti carbonatites are mainly sovite and silicocarbonatite. Calcite is the most prominent mineral with minor abundance of dolomite. Grossularite, chlorite, scapolite, diopside and barkevikite are present in the silicocarbonatites. In Onnakarai, riebeckite sovite, riebeckite ferroan sovite and ferroan carbonatitic breccia with abundant opaque minerals and ilmenite-rutile are present. The radioactive elements are very less in the carbonatites and hence the in situ Gamma radiation is not high in this carbonatite complex. Next to Carbonatites, Syenites and then followed by pegmatites, gneisses and pyroxenites have higher concentration in Sevvatur. In Samalpatti very low radiation values were recorded in dunites and serpentinites. The dose equivalents and effective dose rates are well in excess of 1mSv/yr maximum permissible limits in sevvatur areas, suggesting a reasonably good chance of radiation hazards in these places. People living in these areas should therefore be made aware of the potential radiation related health problems.

Keywords: natural radioactivity, carbonatites