²²⁶Ra, ²³²Th AND ⁴⁰K RADIONUCLIDE MEASUREMENTS IN SOIL SAMPLES OF HUNGARY

KATALIN ZSUZSANNA SZABÓ, DÓRA ZACHÁRY*, ZSUZSANNA SZABÓ, HEDVIG ÉVA NAGY

Lithosphere Fluid Research Lab, Department of Petrology and Geochemistry, Eotvos University, Budapest, H1117, Hungary zachary.dora@gmail.com

Radionuclides of ²²⁶Ra, ²³²Th and ⁴⁰K are found in all soils and rocks. Their distribution is more frequent in the upper continental crust than in the other spheres of the Earth because of their highly incompatible property. The worldwide average radionuclide concentrations in soils for ²²⁶Ra, ²³²Th and ⁴⁰K are 32 Bq/kg, 45 Bq/kg and 412 Bq/kg, respectively. These radionuclides and their daughter isotopes have direct effect on the human through their radiation in the nature environment. We collected soil samples from the upper 0-30 cm layer of the soils to define the ²²⁶Ra, ²³²Th and ⁴⁰K radionuclide concentrations. In Pest County 34 samples from 34 localities (16 on loess and 18 on sand), in Zsámbék basin (Pest and Komárom-Esztergom counties) 10 samples from 10 localities (all on loess), at Kvágószls (SW-Hungary) 4 samples from 3 localities (on red sandstone) and in Pál-völgyi Cave (Budapest) 5 samples (4 on limestone and 1 on marl) have been collected and then studied their activity concentrations for ²²⁶Ra, ²³²Th and ⁴⁰K by use of HPGe gamma-spectroscopy technique. The main aim of our study is to relate the measured activity concentrations to the soil type and their source rock type from which the soils developed. The average 226 Ra, 232 Th and 40 K activity concentrations were 32 ± 3 Ba/kg. 20±2 Ba/kg and 256±26 Ba/kg in the soil samples of Pest County where the loess has greater values (226 Ra: 43±4 Bq/kg; 232 Th: 26±3 Bq/kg; 40 K: 220±23 Bq/kg) than sand (226 Ra: 25±3 Bq/kg; 232 Th: 16±2 Bq/kg; 40 K: 310±28 Bq/kg). In Zsámbék basin the average values for loess are: 226 Ra: 31 ± 4 Bq/kg; 232 Th: 22 ± 4 Bq/kg; 40 K: 280 ± 56 Bg/kg. The average ²²⁶Ra activity concentration is 80 ± 37 Bg/kg in the sandstone of Kvágószls where a former uranium mine operated. In Pál-völgyi Cave the average activity concentrations are ²²⁶Ra: 31 ± 6 Bq/kg, ²³²Th: 26 ± 5 Bq/kg, ⁴⁰K: 291 ± 65 Bq/kg for limestone and ²²⁶Ra: 32 ± 4 Bq/kg, ²³²Th: 26 ± 1 Bq/kg, ⁴⁰K: 315 ± 9 Bq/kg for marl. In concluding, the average ²²⁶Ra, ²³²Th and ⁴⁰K activity concentrations in the studied soil and rock samples are within the average worldwide range, however soils developed on loess show higher values than those on sand.

Keywords: radionuclides, soils, Hungary