

APRESENTAÇÃO

O Sistema de Alerta Hidrológico da Bacia do Rio Madeira (SAH Rio Madeira) apresenta seu Boletim de Monitoramento Hidrológico. Os dados das estações fluviométricas estão disponíveis em www.cprm.gov.br/sace/madeira, assim como os boletins enviados. As informações a seguir apresentadas são baseadas em dados hidrológicos (chuvas e níveis) monitorados pelo Serviço Geológico do Brasil — CPRM e coletadas também por institutos parceiros. Na Figura 1 está apresentada a bacia do rio Madeira e as estações que compõe a rede de monitoramento da região. Os dados de cada uma das estações são detalhados na Tabela 1.

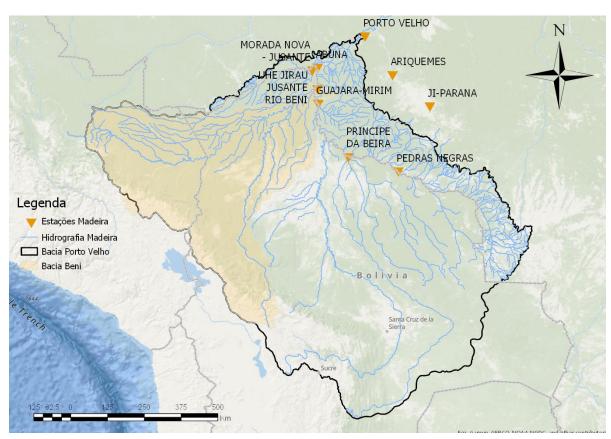


Figura 1: Mapa da bacia do rio Madeira, com destaque para as estações de monitoramento e para a bacia do rio Beni.

Tabela 1: Estações de Monitoramento Fluviométrico na Bacia do rio Madeira.

Nome	Código	Rio	Município	Área
PIMENTEIRAS	15130000	Guaporé	Pimenteiras	54.400
PEDRAS NEGRAS	15150000	Guaporé	Costa Marques	110.000
PRINCIPE DA BEIRA	15200000	Guaporé	Costa Marques	341.000
GUAJARÁ-MIRIM	15250000	Mamoré	Guajará Mirim	609.000
ABUNÃ	15320002	Madeira	Porto Velho	921.000
MORADA NOVA - JUSANTE	15326000	Abunã	Porto Velho	31.100
PORTO VELHO	15400000	Madeira	Porto Velho	976.000
PROSPERIDADE	15490000	Madeira	Porto Velho	977.000
UHE JIRAU JUSANTE RIO BENI	15318000	Madeira	Nova Mamoré	834.000
JI-PARANÁ	15560000	Ji-Paraná (ou Machado)	Ji-Paraná	32.800
TABAJARA	15580000	Ji-Paraná (ou Machado)	Machadinho d'Oeste	60.200

As previsões apresentadas neste Boletim são baseadas em modelos hidrológicos e estão sujeitas às incertezas inerentes aos mesmos. Os dados hidrológicos utilizados nos boletins são provenientes da Rede Hidrometeorológica Nacional de responsabilidade da Agência Nacional de Águas (ANA), operada pelo Serviço Geológico do Brasil (CPRM) e demais parceiros. A análise e dados meteorológicos são fornecidos pelo Sistema de Proteção da Amazônia (SIPAM). Os dados de previsão de chuvas são provenientes do Centro de Previsão Climática da Administração Oceânica e Atmosférica Nacional dos Estados Unidos (CPC/NOAA) e são usadas ainda informações de previsões meteorológicas produzidas pelo CPTEC/INPE.

RESUMO DO BOLETIM

Nesta última semana a tendência geral foi de leve redução dos níveis dos rios nas estações monitoradas (com exceção a estação Guajará-Mirim), conforme o esperado para o período. Nas estações Ariquemes e Pedras Negras, o nível do rio está na zona de atenção para mínimas. A maior parte das bacias monitoradas apresentou precipitação abaixo da climatologia ao longo da última semana.

Na presente data, o nível do rio Madeira em Porto Velho já está abaixo dos 4,0 metros, com uma projeção de a cota de referência de Q95 (cota 2,58 metros) em outubro de 2021. Havendo um atraso no início da estação chuvosa para além de outubro, a condição de seca poderá se aproximar de anos mais secos, assim como ocorreu em 2010, 2005, 2007 e 2020, a depender também da evolução das chuvas até este período.

MONITORAMENTO DE NÍVEIS

Na Tabela 2 são apresentados os dados de níveis registrados nos pontos de monitoramento apresentados na Figura 1. Na tabela foi incluída variação dos níveis ao longo das últimas 24h. Como os equipamentos de registro das variáveis hidrológicas são automáticos, podem ocorrer falhas na transmissão de dados e por isso falhas poderão ser corrigidas futuramente.

Tabela 2: Cotas atuais e variação nos últimos dias nas estações da Bacia do rio Madeira.

Nome da Estação	Horário última leitura	Nível Atual	Variação nas Últimas 24h	Cota de Inundação
			(cm)	
PORTO VELHO	09/08/2021 13:00	364	-14	1700
MORADA NOVA - JUSANTE	09/08/2021 13:00	912	-2	#
GUAJARÁ-MIRIM	09/08/2021 13:00	669	1	1110
PRÍNCIPE DA BEIRA	09/08/2021 13:00	408	-3	#
PEDRAS NEGRAS	09/08/2021 13:00	268	-2	#
JUSANTE BENI	09/08/2021 13:00	1042	-5	#
ABUNÃ	01/02/2021 12:00	2024	33	#
JI-PARANA	05/08/2021 17:00	646	0	#
ARIQUEMES	09/08/2021 13:00	120	-1	#

Legenda: + Valor Informado pelo observador; * Equipamento em manutenção; # Sem valor definido

Nesta última semana a tendência geral foi de leve redução dos níveis dos rios nas estações monitoradas, conforme o esperado para o período. Nas estações Ariquemes e Pedras Negras, o nível do rio está na zona de atenção para mínimas.

Da Figura 2 até a Figura 7, são resumidas as estatísticas de níveis observados ao longo do histórico de monitoramento nas estações da bacia do rio Madeira. Essas estatísticas são:

- as curvas envoltórias que representam os valores máximos observados e os valores com 10% de permanência, observados no histórico para cada dia do ano;
- as curvas envoltórias que representam os valores mínimos observados e os valores com 90% de permanência(ou apenas 10% abaixo), observados no histórico para cada dia do ano;
- os níveis medianos para observados no histórico para cada dia do ano;
- os níveis observados ao longo do ano de 2020 (linha sólida azul).

Para a operação de secas, a zona de atenção é aquela que está abaixo do limiar de 10% de permanência (faixa laranja nos gráficos).



Figura 2: Nível do rio Mamoré na estação GUAJARÁ-MIRIM (15250000), em GUAJARÁ-MIRIM.

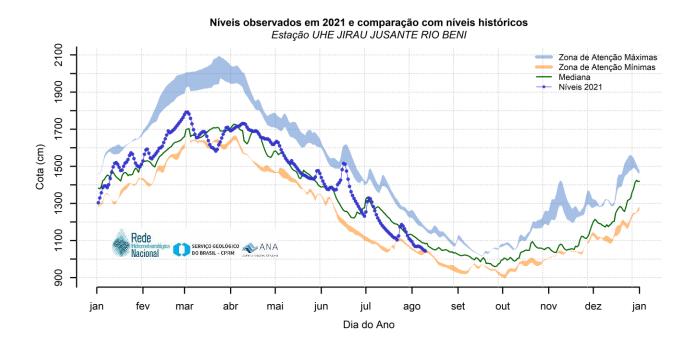


Figura 3: Nível do rio Madeira na estação UHE JIRAU JUSANTE BENI (15318000), em NOVA MAMORÉ.

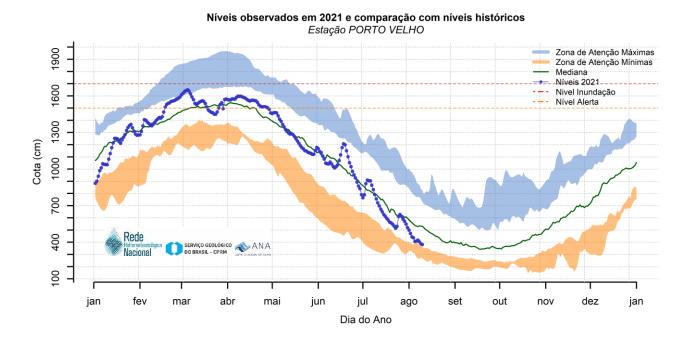


Figura 4: Nível do rio Madeira na estação PORTO VELHO (15400000), em PORTO VELHO.

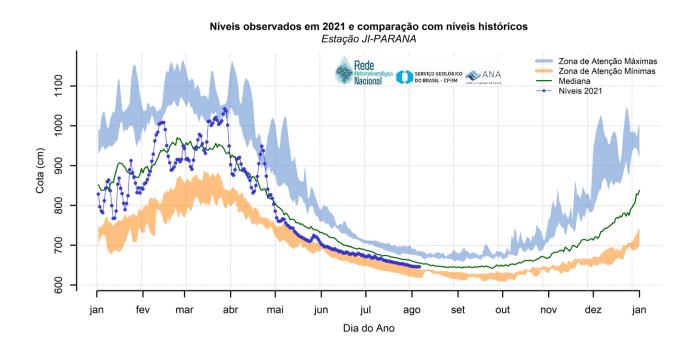


Figura 5: Nível do rio Ji-Paraná na estação JI-PARANÁ (15560000), em JI-PARANÁ.

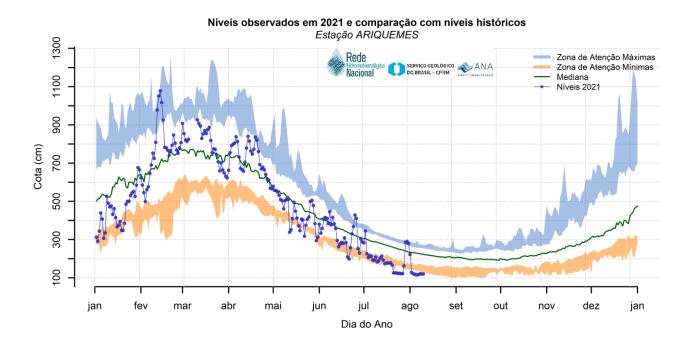


Figura 6: Nível do rio Jamari na estação ARIQUEMES (15430000), em ARIQUEMES.

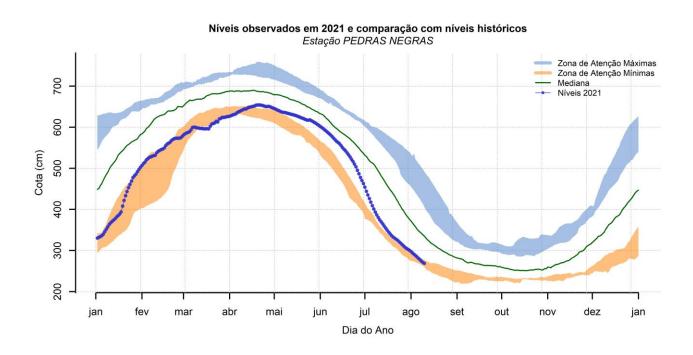


Figura 7: Nível do rio Guaporé na estação PEDRAS NEGRAS (15150000), em PEDRAS NEGRAS.

PROGNÓSTICO DE NÍVEIS

Neste tópico, são apresentados os resultados de modelo de previsão para Porto Velho. Para essa previsão, foram utilizados os coeficientes de decaimento médios mensais em Porto Velho, obtidos a partir de seu histórico de registros, que vai desde 1967 até hoje. Além disso, foram considerados dois níveis de referência para Porto Velho. O primeiro deles relaciona-se ao nível estabelecido pela delegacia fluvial de Porto Velho, como sendo o nível de 4,0 metros. A partir dele, a marinha pode estipular restrições à navegação no rio Madeira. O segundo nível de referência, é o nível associado à vazão de permanência de 95%, ou Q95, utilizada como referência para o gerenciamento de recursos hídricos em rios de domínio da União.

Na Figura 8 é a presentada a projeção de vazões para Porto Velho. Nessa figura são indicadas: as vazões observadas; a média móvel de duas semanas dos dados diários; a projeção das vazões, baseada no último valor da média móvel; a projeção das vazões ao longo de toda vazante, com intervalos de confiança de 90, 80 e 50%; e as vazões de referência adotadas. Ressalte-se que foi utilizada a vazão média móvel de duas semanas como ponto de partida para as projeções para atenuar o efeito dos repiquetes nas projeções.

Pela projeção apresentada: é provável que:

 no início de outubro, o rio atinja a cota de referência de Q95 (vazão de aproximadamente 4.060 m³/s, na cota 2,58 metros).

Havendo um atraso no início da estação chuvosa para além de outubro, a condição de seca poderá se aproximar de anos mais secos, assim como ocorreu em 2010, 2005, 2007 e 2020, a depender também da evolução das chuvas até este período.

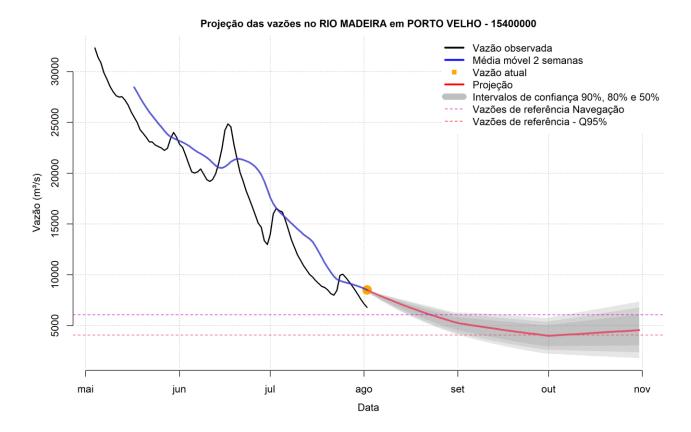


Figura 8: Projeções de vazões para Porto Velho ao longo da vazante de 2021

ACOMPANHAMENTO DAS CHUVAS

No período atual se observa o início da estação de transição da estação seca para chuvosa na bacia do Branco enquanto a quase totalidade das bacias encontra-se no final da estação chuvosa, abaixo a evolução do comportamento das anomalias de precipitação acumulada em 30 dias, sobre as bacia hidrográficas, amostrado semanalmente na área de interesse:

Em 15 de julho de 2021, déficit de precipitação sobre o Beni, Branco, Guaporé, Içá, Japurá, Javari, Juruá, Jutaí, Marañon, Napo, Negro, Purus e Ucayali, excesso de precipitação observado sobre as bacias do Aripuanã e Madeira. Bacias do Coari, Ji-Paraná, Mamoré curso principal do Solimões e bacia do Tefé se encontram em condições de normalidade.

Em 22 de julho de 2021, déficit de precipitação sobre bacias do Aripuanã, Branco, Guaporé, Içá, Japurá, Javari, Ji-Paraná, Juruá, Marañon, Napo, Negro, Purus, Tefé e Ucayali. Bacias do Beni, Coari, Jutaí, Madeira, Mamoré e curso principal do Solimões se encontram em condições de normalidade no período.

Em 29 de julho de 2021, déficit de precipitação sobre bacias do Aripuanã, Beni, Coari, Guaporé, Içá, Japurá, Javari, Ji-Paraná, Juruá, Jutaí, Madeira, Mamoré, Marañon, Napo, Purus, Tefé e Ucayali. Bacias do Branco, Negro e curso principal do Solimões se encontram em condições de normalidade no período.

Em 05 de agosto de 2021, déficit de precipitação sobre bacias do Aripuanã, Beni, Coari, Guaporé, Içá, Japurá, Javari, Ji-Paraná, Juruá, Jutaí, Madeira, Mamoré, Marañon, Napo, Purus, Tefé e Ucayali. Bacias do Branco, Negro e curso principal do Solimões se encontram em condições de normalidade no período.

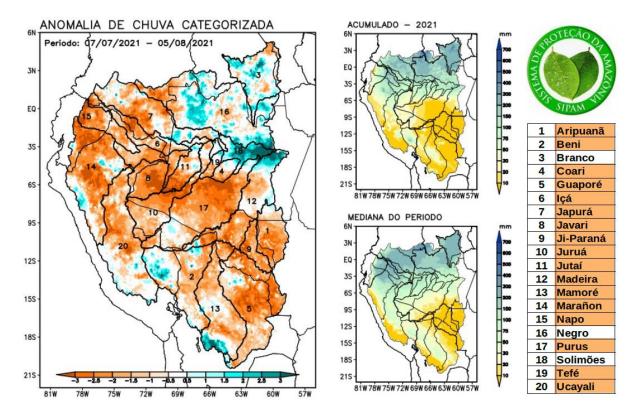


Figura 9: Distribuição das anomalias de precipitação acumuladas nos últimos 07 dias sobre a bacia do Madeira - Média histórica calculada com base no período de 1998 a 2019 (Fonte: dados fornecidos pelo SIPAM, a partir de

http://ftp.cptec.inpe.br/modelos/io/produtos/MERGE/).

A Tabela 3, mostra os valores de precipitação média acumulada (mm de chuva) por bacia, tomando como base as estimativas de precipitação por meio de imagens de satélite, produto denominado MERGE/GPM, disponibilizado pelo Instituto Nacional de Pesquisas Espaciais, no período 2000 – 2020(*), levando-se em conta o limite geográfico das bacias hidrológicas da Amazônia Ocidental, para tanto foi utilizada a técnica de quantis, por se mostrar uma ferramenta adequada e precisa para categorizar precipitação e anomalias de variáveis discretas, foram adotados os seguintes limiares 5%, 12.5%, 20%, 27.5%, 35%, 42.5%, 57.5%, 65%, 72.5%, 80%, 87.5% e 95% buscando estratificar a técnica e permitir uma categorização mais detalhada das condições em cada bacia monitorada.

Tabela 3: Anomalia de chuvas observada ao longo das últimas semanas nas subbacias que compõem a área de contribuição do rio Madeira (Fonte: SIPAM).

05/00/0004	Quantis para categorização de anomalias de precipitação											
05/08/2021	5.0%	12.5%	20.0%	27.5%	35.0%	42.5%	57.5%	65.0%	72.5%	80.0%	87.5%	95.0%
Aripuanã	0	0	1	2	3	4	9	10	15	18	29	37
Beni	5	7	13	15	21	24	39	43	52	57	74	90
Branco	145	161	184	193	210	219	254	264	285	297	329	353
Coari	26	30	37	40	47	52	68	75	91	99	117	129
Guaporé	1	1	3	4	6	8	18	22	31	37	57	76
lçá	103	116	135	144	161	169	209	220	241	253	287	315
Japurá	123	135	156	165	182	190	219	227	244	255	283	307
Javari	36	46	62	69	80	85	103	108	121	129	155	175
Ji-Paraná	0	0	1	1	3	4	8	11	18	22	31	40
Juruá	19	25	35	40	48	51	65	70	80	86	102	115
Jutaí	46	54	67	73	81	85	102	107	118	125	143	157
Madeira	5	8	12	14	17	19	30	34	42	47	60	70
Mamoré	3	4	8	10	16	19	34	38	48	55	75	91
Marañon	43	51	64	70	81	88	114	119	134	142	165	184
Napo	97	108	129	141	166	179	230	241	263	275	304	325
Negro	113	131	153	163	181	189	221	229	249	260	290	315
Purus	8	11	16	18	23	25	36	40	50	55	71	81
Solimões	51	62	79	87	100	106	129	136	150	159	185	207
Tefé	39	44	54	59	67	71	86	90	99	105	126	148
Ucayali	10	14	21	25	31	35	49	54	66	73	92	109

As tabelas abaixo apresentam (Tabela 4A) a precipitação média observada (mm) em cada bacia tomando como referência as estimativas de precipitação por satélite utilizando a técnica MERGE, disponibilizadas em http://ftp.cptec.inpe.br/modelos/tempo/MERGE/GPM/DAILY/acumuladas em 30 dias nas datas indicadas, os valores médios das anomalias categorizadas (Tabela 4B) foram estimados com base no valor de anomalia de cada pixel na área da bacia monitorada, calculados conforme metodologia descrita no item anterior, nas mesmas datas do monitoramento da precipitação, a escala de cores das anomalias segue a legenda descrita.

Tabela 4: Precipitação acumulada em 30 dias (mm) e anomalia categorizada de precipitação por quantis. Dados fornecidos pelo SIPAM.

	Precipitação acumulada média na bacia (mm)									
· ·	08/07/2021	15/07/2021	22/07/2021	29/07/2021	05/08/2021					
Aripuanã	17	15	6	2	2					
Beni	64	33	50	26	27					
Branco	198	197	216	257	246					
Coari	118	108	84	54	52					
Guaporé	13	6	7	4	4					
lçá	160	169	176	158	137					
Japurá	190	174	189	181	174					
Javari	50	66	68	60	48					
Ji-Paraná	6	6	3	0	0					
Juruá	56	47	60	40	35					
Jutaí	106	112	117	86	71					
Madeira	58	52	44	33	25					
Mamoré	35	22	32	13	15					
Marañon	109	108	93	76	58					
Napo	172	173	158	138	128					
Negro	213	187	204	217	211					
Purus	39	35	29	18	17					
Solimões	135	142	147	134	112					
Tefé	131	113	94	71	68					
Ucayali	26	21	29	25	24					

Anomalia categorizada média na bacia										
08/07/2021	15/07/2021	22/07/2021	29/07/2021	05/08/2021						
0.7	0.8	-1.0	-1.8	-1.6						
0.6	-0.7	0.4	-0.9	-0.5						
-1.7	-1.7	-1.1	0.1	0.3						
0.4	0.4	-0.4	-1.4	-0.7						
-0.2	-1.1	-1.3	-1.9	-1.7						
-1.6	-1.2	-0.8	-1.2	-1.5						
-1.2	-1.7	-1.0	-1.2	-0.9						
-2.8	-1.9	-1.6	-1.9	-2.2						
-0.8	-0.2	-1.4	-2.2	-1.9						
-1.5	-1.8	-0.6	-1.7	-1.6						
-1.5	-0.8	-0.3	-1.5	-1.4						
0.7	0.6	-0.1	-0.8	-0.7						
0.4	-0.4	0.2	-1.1	-0.8						
-0.7	-0.5	-0.7	-1.0	-1.5						
-1.2	-1.2	-1.3	-1.7	-1.8						
-0.7	-1.4	-0.7	-0.3	0.2						
-0.8	-0.8	-0.9	-1.8	-1.6						
-0.4	-0.2	0.2	0.0	0.0						
0.3	-0.2	-0.7	-1.4	-0.7						
-1.3	-2.0	-1.6	-1.5	-1.0						

QUANTIL	0% 5%	12.5%	20.0%	27.5%	35.0%	42.5%	50.0%	57.5%	65.0%	72.5%	80.0%	87.5%	95% 100%
INDICE	-3.0	-2.5	-2.0	-1.5	-1.0	-0.5	0.0	0.5	1.0	1.5	2.0	2.5	3.0
	EXTREMAMENTE	TENDÉNCIA A	MUITO	TENDÊNCIA A		TENDÉNCIA A		TENDÉNCIA A		TENDÉNCIA A	MUITO	TENDÉNCIA A	EXTREMAMENTE
CATEGORIA	SECO	EXTREMAMENTE	5500	MUITO	SECO	SECO	NORMAL	CHUVOSO	CHUVOSO	MUITO	CHUVOSO	EXTREMAMENTE	CHUVOSO
		SECO		5600						CHUVOSO		CHUVOSO	

DESCRIÇÃO DOS DADOS E MODELOS

Os dados hidrológicos utilizados nos boletins são provenientes da Rede Hidrometeorológica Nacional (RHN) de responsabilidade da Agência Nacional de Águas (ANA), operada pelo Serviço Geológico do Brasil (CPRM).

Os dados de monitoramento de chuvas foram obtidos por meio de imagens de satélite do produto MERGE/GPM, disponibilizados pelo INPE http://ftp.cptec.inpe.br/modelos/tempo/MERGE/GPM/DAILY/. Os dados de previsão de chuva apresentados são do modelo CFS, gerados pelo NOAA, disponíveis em http://origin.cpc.ncep.noaa.gov/products/people/mchen/CFSv2FCST/weekly/. Os dados de monitoramento e previsão foram baixados, organizados e interpretados pelo Sistema de Proteção da Amazônia (Centro Regional de Manaus).

A previsão hidrológica foi gerada considerando o coeficiente de recessão para vazões, a partir da análise do histórico da estação de Porto Velho. Foram definidos intervalos de confiança de 90, 80 e 50% para os coeficientes de recessão e com base neles, foram estimadas as faixas de confiança das previsões de recessão média.

As previsões apresentadas neste Boletim são baseadas em modelos hidrológicos e estão sujeitas às incertezas inerentes aos mesmos. Além disso, as previsões feitas utilizamse de previsões meteorológicas de outros órgãos, também sujeitas a erros, que acabam sendo incorporados às previsões aqui apresentadas. Esses erros são permanentemente avaliados pela equipe do SAH Madeira.

Este boletim é produzido graças à parceria entre o Serviço Geológico do Brasil e a Agência Nacional de Águas para a gestão e operação da Rede Hidrometeorológica Nacional. Também conta com a colaboração do Sistema de Proteção da Amazônia, o SIPAM.

Parceria:

Marcus Suassuna Santos

Pesquisador em Geociências – Hidrologia

SISTEMA DE ALERTA HIDROLÓGICO DA BACIA DO RIO MADEIRA

